Greening Agrifood in Social Economy

T

n

Co-funded by the European Union

1. The team, which was the first, who have implemented precision farming technologies in Ukraine

2. The company that analyzed and digitized about 2,000,000 hectares

3. The exclusive partner of WARD laboratories (USA), the international authority in the field of agro research.

4. Developer of unique solutions and tools to determine the potential of the field and manage its profitability

5. The most authoritative company in the field of agronomy and soil testing according to farmers opinions

APY%GA	Exclusive partnership with WARD laboratory (USA)		The most innovative agrocompany in Ukraine (Forbes rank)		Development of MyAgriLab softwear. Start working in Kazakhstan		Start of agroinnovation landfill "Digital Field" and own farm
2008-2013	2014	2015	2016	2017	2018	2019	2020
T						2015	2020

Clients

clients

Analyzed and digitalized

Location 1

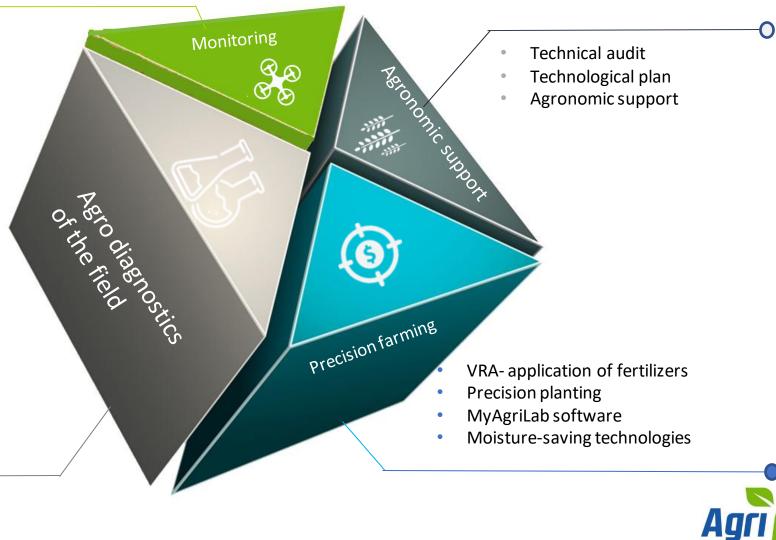
Kyiv region, Boryspil district, village Velika Olesandrivka

Location 2

Poltava region, Poltava District, village of Rozsoshentsi

Location 3

Vinnytsia region, Vinnytsia district, village Illintsi



Services

- Diagnosis of nitrogen nutrition
- Satellite monitoring
- UAV monitoring

.

.

Comprehensive agrochemical analysis

Analysis of weather and climatic data

Measurement of compaction

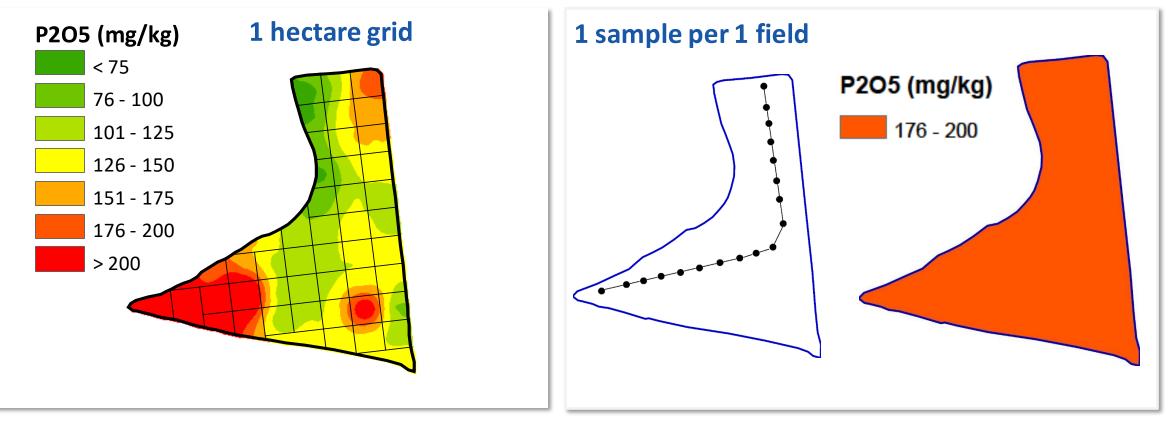
Lab

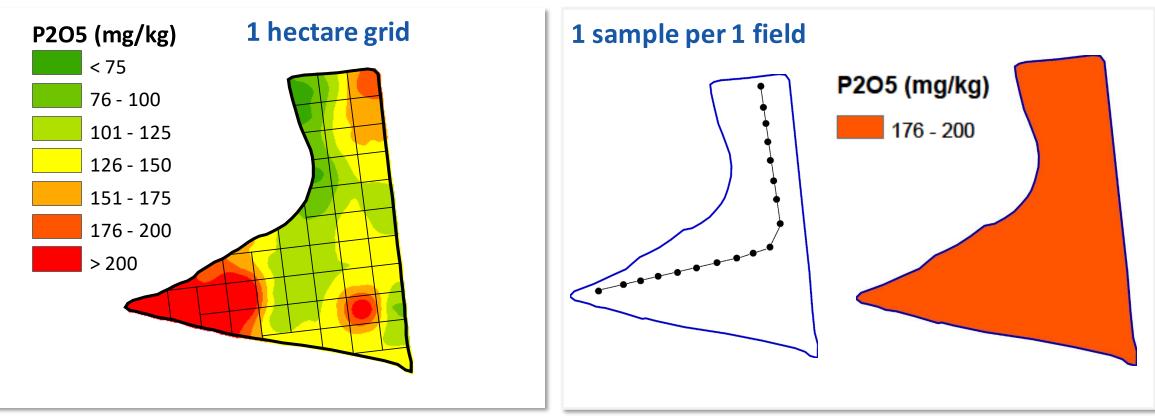
Complex field expertise: algorithms

Co-funded by the European Union

Agrodiagnostic algorithm

the European Union




- Objectively less 10 hectares,
- optimal 5 hectares,
- the best detail is achieved from 3 to 1 ha.

1 sample from the field, the result is a high phosphorus content in the soil. The content is 30% higher than the weighted average when applying the selection grid.

- Objectively less 10 hectares,
- optimal 5 hectares,
- the best detail is achieved from 3 to 1 ha.

1 sample from the field, the result is a high phosphorus content in the soil. The content is 30% higher than the weighted average when applying the selection grid.

Agri Lab

Number of soil samples to ensure accuracy

рН		Р			К	Organic matter	
+ / -	Number of samples	+/-	Number of samples	+/-	Number of samples	+/-	Number of samples
0,1	337	1	337	10	164	0,1	89
0,2	85	5	14	25	27	0,2	23
0,3	38	10	4	50	7	0,3	10
0,4	21	15	2	100	2		

Step #1: Soil sampling with GPS

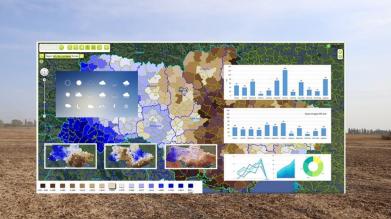
- Productivity of each soil sampler is 1000 ha per day
- SPS, control and coding system
- All samples administrated in on-line system MyAgriLab

S

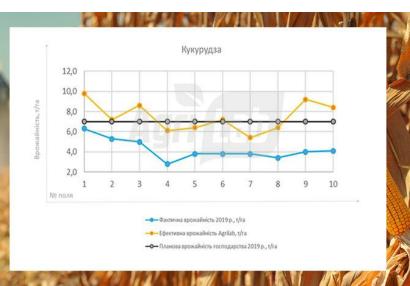
Test measures: granulometric texture, pH, buffer pH, sum of cations (CEC), base saturation (%), soluble salts, organic matter, nitrate-nitrogen, phosphorus, potassium, calcium, magnesium, sodium, sulfur, zinc, iron, manganese, copper, <u>carbon</u> etc.

The laboratory **certified**: NAPT PAP, MAP, NFTA

Productivity is 4000 samplers per day.



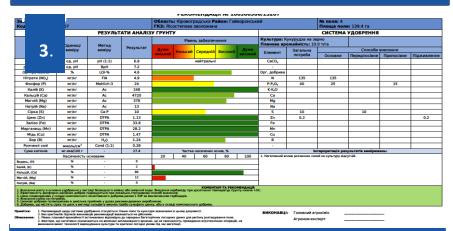
Step #3: Weather and climate analysis



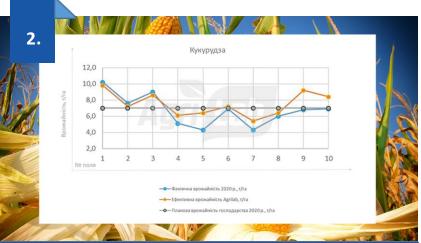
- Dynamics of precipitation and temperatures
- Distribution of precipitation and temperatures during the growing season

- Soil moisture level and moisture-holding capacity
- Identification of critical factors

 Assessment of precipitation sufficiency and temperature distribution, evapotranspiration for growing various crops



Maps, Recommendations


Agrochemical

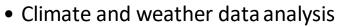
Recommendations about fertilization, crops romoisture-saving technologies

Co-funded by the European Union

Determination of effective yield

Digitalization in MyAgriLab

Moisture-saving technologies



Co-funded by the European Union

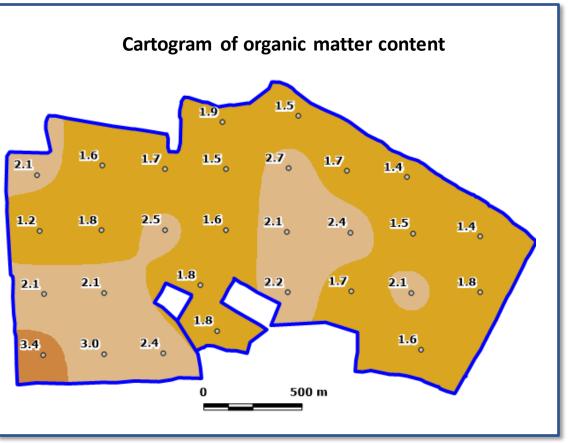
- Soil testing and measurement
- Crop rotation analysis
- Technological audit
- Tillage technology
- Fertilization
- Crop rotation

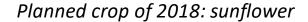
- Improving soil structure
- increase productivity and profitability
- Reducing risks

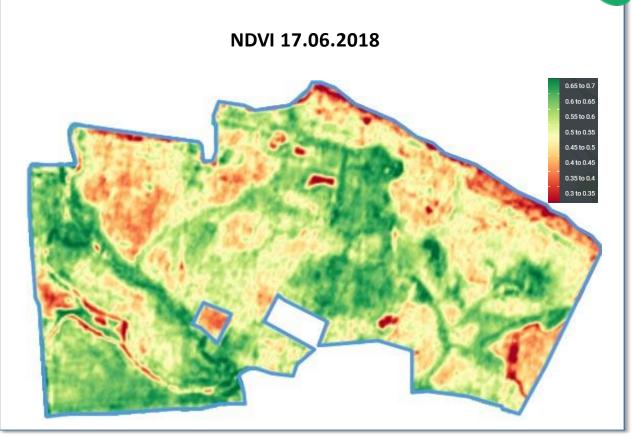
Result

Testing

Implementation




Co-funded by the European Union


Grouping of soils according to the level of organic matter %

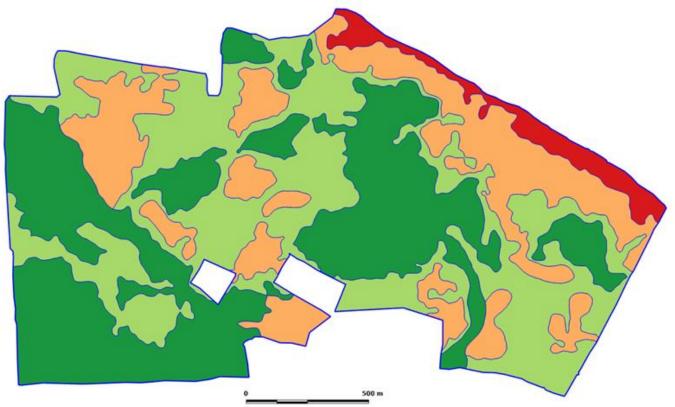
_	Very high	>5,0	Average	2,1-3,0
	High	4,1-5,0	Low	1,1-2,0
	Increased	3,1-4,0	Very low	<1,1

• The field 291 hectares

Sunflower growth and vegetation depends on the fertility of different areas of the field:

High/medium organic matter content = good plant development

Low content of organic matter = retardation in growth and development



• Field 18Ru (291 hectares)

Planned crop: sunflower

Productivity zones according to multi-year satellite monitoring data

Effective yield of sunflower in productivity zones

Productivity zone	Area zones, hectares	Effective yield, t/ha
very low	10,3	< 1,5
low	66,5	1,6 – 2,7
average	102,7	2,8 - 4,0
high	111,5	> 4,0
Average across the field	291,1	3,0

• Field 18Ru (291 hectares)

Effective yield: 3.5 t/ha Phosphorus requirement: 25 kg/ha per year.

Effective yield: 3.5 t/ha Phosphorus requirement: 50 kg/ha per year

1. The rate of phosphorus fertilizers depends on the effective crop yield and the actual content of mobile phosphorus compounds in the soil.

2. Within the same productivity zone, the need for power elements may be different.

3. Applying average fertilizer rates to the field does not allow to fully realize the potential of culture in areas with low phosphorus content. Whereas an economically unjustified rate is imposed on plots with high security.

Map of mobile phosphorus content

Map of potassium content 52 Effective yield: 3.0 t/ha 56 0 0 Need for potassium: 30 kg/ha a.i. 54 105 48 0 59 0 70₀ 370 58 0 **61**₀ 42₀ 57₀ **67** 47 60₀ 61₀ 49₀ 0 Effective yield: 3.1 t/ha 55 53 0 52₀ 74。 64 0 48 77。 Need for potassium: 70 kg/ha a.i 94₀ 77, 49 62 61 0 500 m Field 18Ru (291 hectares) Soils by potassium (K) content, mg/kg Planned crop: sunflower 81-100 >201 Very high Average (a) high (b) 161-200 low (b) 61-80 Co-funded by Agrı high (a) low (a) 121-160 41-60 the European Union Average (b) Very low 101-120 <40

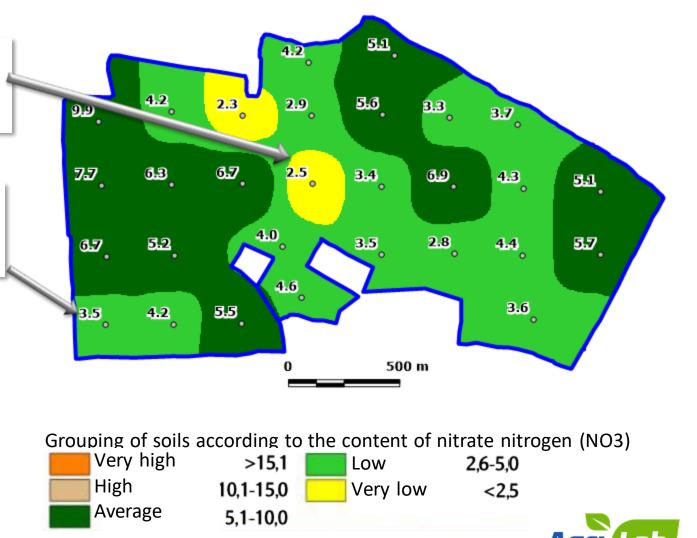
Planned crop: sunflower

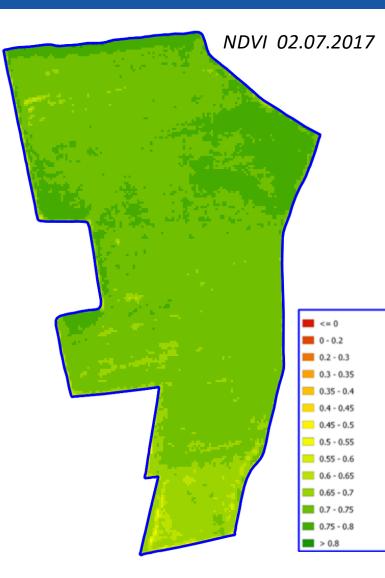
Field 18Ru (291 hectares)

Effective yield: 2.7 t/ha

Nitrogen requirement: 65 kg/ha per year

Effective yield: 3.5 t/ha


Nitrogen requirement: 85 kg/ha a.i.


Applying the average rate of nitrogen fertilizers to the field:

1) does not allow to fully realize the potential of culture in areas with high productivity.

2) an excessive rate is applied to areas with low productivity, which is economically, ecologically, and energetically impractical.

Map of nitrate nitrogen content

2017 year

CULTURE: Corn FIELD AREA: 206 ha

CULTURE DEVELOPMENT BASED ON NDVI: Uniform distribution of the field

FERTILIZER SYSTEM: Sulfoamofos 200 kg/ha UAN -32– 300 l/ha

TOTAL NUMBER OF A.I.: 167 N 40 P 28 S

CROP CAPACITY: 7.2 t/ha

2018 year

CULTURE: Corn FIELD AREA: 206 ha

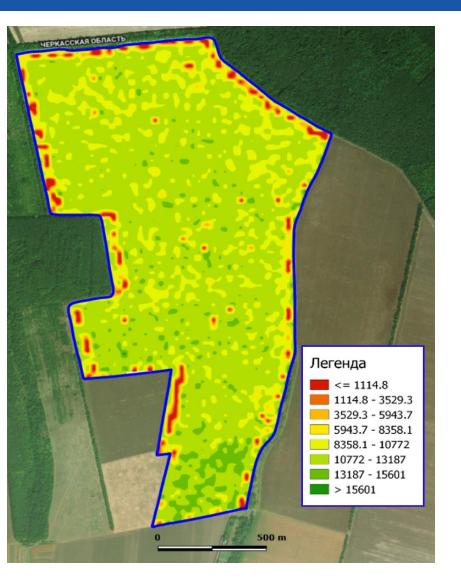
PLAN. YIELD: Effective yield+ additional income

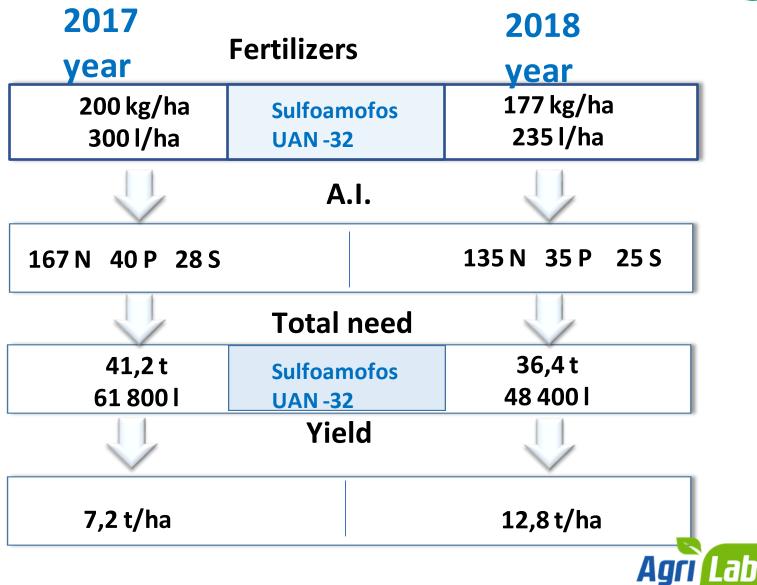
SCHEDULED FERTILIZERS: Sulfoamofos 177 kg/ha UAN -32 – 235 l/ha

TOTAL NUMBER OF A.I.: 135 N 35 P 25 S

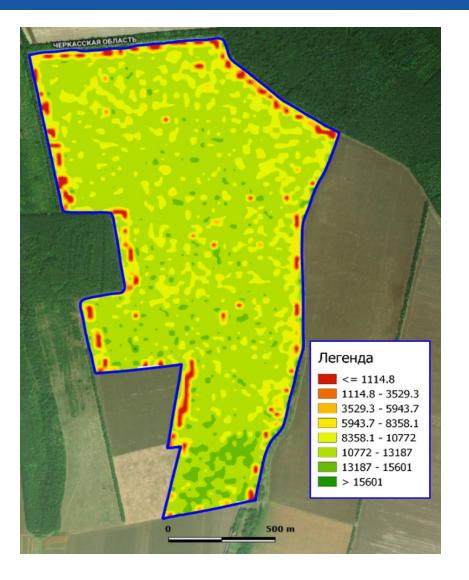
APPLICATION OF FERTILIZERS: VRA

Phosphorus content


Co-funded by the European Union


Map-task - sulfoamofos

Map-task - UAN -32



Precipitation in 2017-2018

Month	2017	2018
March	32	76
April	70	17
Мау	47	25
June	49	85
July	52	80
August	35	10
September	59	41
During the growing season	345	335
In a year	587	559

7,2 t/ha

Yield

GBA

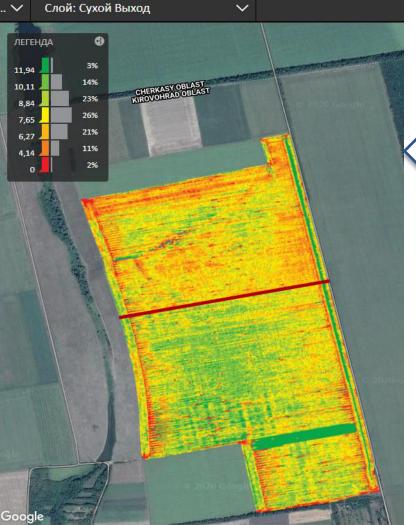
2017/2018	Fertilizer	Weather	Fertilizers cost	Yield	The results	
Agri Lab						
2018 Agrodiagnostics	Before sowing, VRA: Sulfoamofos (NPS 20:20:14) 177 kg/ha UAN-32, 235 l/ha	559 mm/year	146 \$/ha	12,8 t/ha	+898 \$/ha	
2017 Standard	Before sowing: Sulfoamofos (NPS 20:20:14) 200 kg/ha UAN-32, 300 l/ha	587 mm/year	181 \$/ha	7,2 t/ha	Planned data	
	nded by uropean Union					Agri Lab

			Cost of							Difference		
Field	Area, ha	Planned culture	Effective yield, t/ha	Planned yield, t/ha	Yield difference, t/ha	vield	Ν	P2O5	K2O	Total NPK	NPK difference Kg-ai/ha	in the cost of fertilizers, USD/ha
1	200	Corn	7,4		-2,4	-434	97	15	47	159	-45	-38
1	200	Com		9,8			133	15	56	204		
2	100	Corp	8,8		-1,0	-181	102	25	62	189	-18	-15
Z	2 100 Corn	Com		9,8			115	27	65	207		
2	00	Com	10,4		+0,6	+109	129	55	36	220	+15	+14
3	90	Corn		9,8			119	52	34	205		
4	300	Sunflower	4,0		+0,7	+265	81	54	50	185	+38	+35
4	500	Sumower		3,3			57	47	43	147		

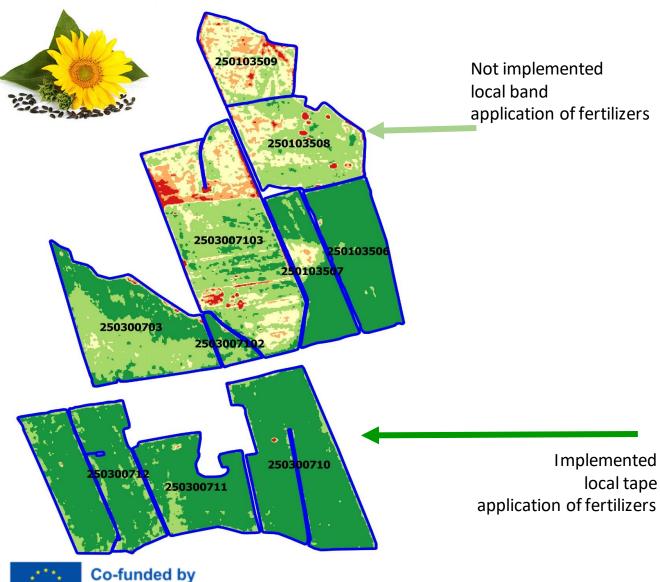
Summary: Data collection, analysis and evaluation!

- planned real yield
- saving resources on overvalued fields

Agrodiagnostic result



Strip-till + agrodiagnostic



Efficiency local band application of fertilizers, sunflower

GBA

!Savings on fertilizers up to 30% without changing the agronomic effect compared to spreading

!Increase in productivity due to efficiency

the European Union

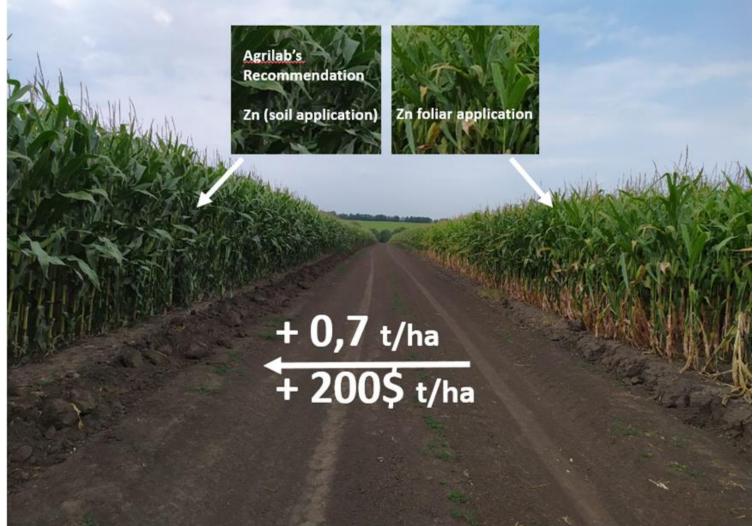
Possible loss of corn yield per grain due to soil pH

The average long-term yield level at optimal pH is 9.0 t/ha

pH in the zone	Loss of harvest, t/ha	Zone area, ha	Loss of harvest in zone, t	The value of the under- obtained harvest, USD
6,6	-	35,50	-	-
6,0	0,36	28,04	10,2	1529
5,7	0,96	29,82	28,5	4268
4,9	3,99	40,53	161,6	24167
In total		133,89	200,3	29964

*Cost of 1 ton: corn - 149 USD

! Delay in adjusting the pH of the soil solution of the fields leads to annual agronomic losses in the form of reduced yields and has a significant impact on economic performance indicators. (see an example of calculations for corn per grain).



Limiting factors - zinc and its deficits

Co-funded by the European Union

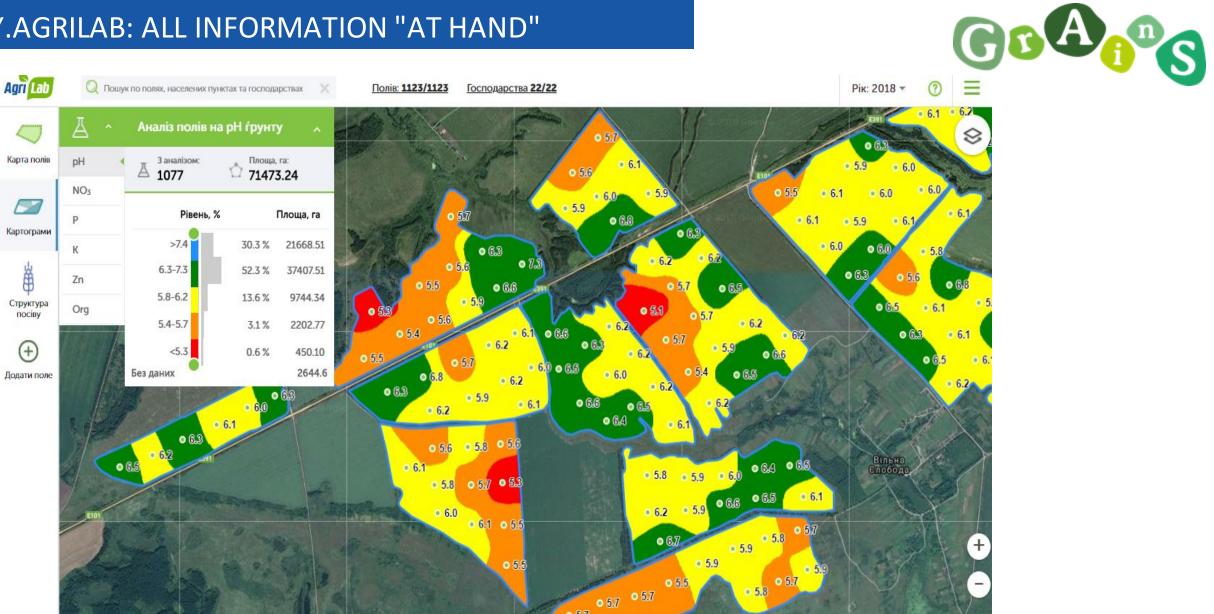
MyAgriLab

Enclosure with history of change

🦻 Soil analysis data

🤍 Cropping plan

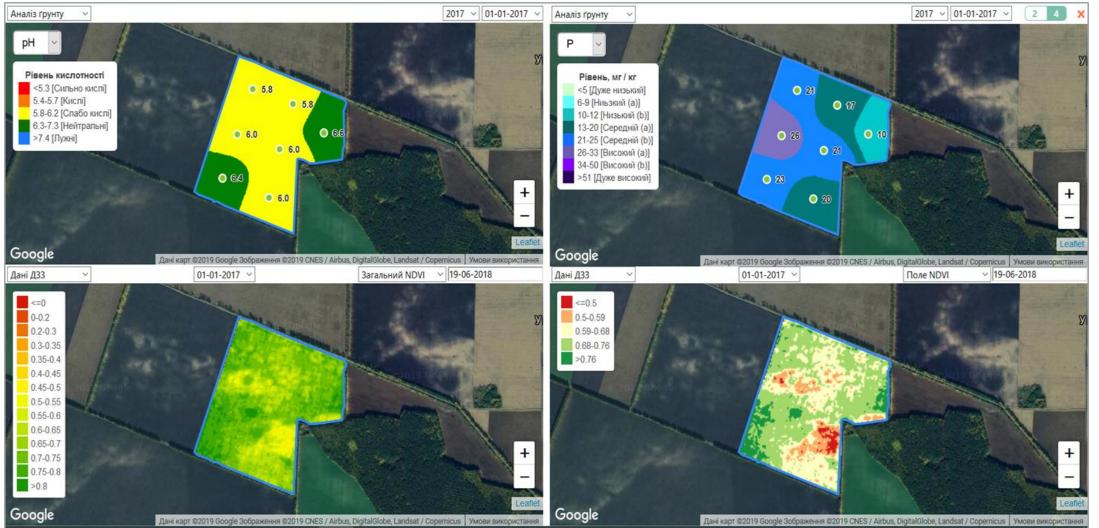
Analytics tools


Result: production cost optimization, rapid decision-making, operational efficiency

Co-funded by the European Union

MY.AGRILAB: ALL INFORMATION "AT HAND"

曲


посіву

 (\pm)

MY.AGRILAB: ALL INFORMATION "AT HAND"

Contact us:

Kyiv region, Boryspil district, Velyka Oleksandrivka village, 2 Brovarska str.

sales@agrilab.com.ua, +38 067 465 49 09 www.agrilab.ua

Co-funded by the European Union

Thank you !

GCAins

For more information

